建議每家都填表格,由專員給您適合的方案,在選擇可以負擔的就可以了
免費諮詢一:這一家的諮詢速度特色就是快
免費諮詢二:有汽機車即可申貸,24小時內可撥款
一對一的快速立即免費諮詢、配對,十分鐘就能知道您適合的銀行申貸方案是什麼。

立即免費諮詢
免費諮詢三:這家貸款公司評價非常高
免費諮詢四:這一家的諮詢方案很多元,很推薦
免費諮詢五:一群對於專精貸款的專業人士提供相關諮詢
免費諮詢六:這家貸款公司可以承辦軍公教人士
軍公教朋友可以到這間貸款快速找到適合的貸款方案

立即免費諮詢
個人貸款 貸款 信用貸款 債務整合 負債整合 債務協商 個人信貸 小額借款 信貸 信貸利率
信貸代辦 創業貸款 銀行貸款 貸款投資 買車貸款 車貸 汽車貸款 債務協商 卡債處理 二胎房貸
信用不良信貸貸的下來嗎 該怎辦 信用貸款哪裡申請最快核貸 信用不良要如何申請信用貸款
個人信貸免費諮詢的網站 個人信貸條件,銀行個人信貸比較諮詢 小額信貸利率比較標準迷思
三面向分析最低信貸利率條件的迷惑陷阱 哪家銀行信貸利息最低 銀行個人信貸免費諮詢 小額信貸推薦幾家 個人信貸利率比較銀行條件如何談
| RF4165456EDFECE15158DCE |
關於iPhone SE2即將在2020年春季發布的消息已經吵得熱火朝天,不論是爆料博主還是來自供應鏈的消息均證實了這一點。而且,比較令人感到意外的是,目前各方面曝光的外觀配置均默契相同,實在是很難令人不相信。 日前,國外有博主意外曝光了一組iPhone SE2在蘋果官方的介紹頁面,並表示這是蘋果在進行上線測試時泄漏而出,真實性非常之高。除了在頁面中展示了iPhoneSE2的新外觀和配置,這也從側面反映了該機的發布時間真的離我們不遠了。 ... 根據目前爆料信息顯示,iPhone SE2並不會採用當下主流的全面屏設計元素,而是繼續延續蘋果經典的外觀設計,由於其採用了4.7英寸螢幕,所以整體機身尺寸也是更加接近於iPhone 8整機大小,同時在機身輪廓方面卻頗有當年iPhone 4的影子,非常硬朗的機身邊框設計,或許也是能夠勾起很多果粉們的回憶。 至於配置方面,iPhone SE2將會採用7nm A13處理器,同時配以IOS13系統,性能無疑也是非常的強勁,正面搭載一塊4.7英寸LCD螢幕,解析度依舊是720p ,同時在相機方面,依舊採用了後置1200萬像素單攝,前置800萬像素相機,更重要的是在售價方面,根據多位業內人士預測,iPhone SE2售價將會被定在399元,約合人民幣為2750元,無疑這樣一款性能小鋼炮iPhone SE2,定價卻在3000元以內,絕對會讓很多國產手機廠商紛紛措手不及。 ... 而根據圖片我們看的出來,一共有4種配色分別是銀色、黃色、紅色、以及黑色,機身外觀風格與第一代SE非常相像,但是很明顯尺寸變大,螢幕為4.7英寸,背部則採用單顆攝像頭,做工工藝與iPhone8類似。 從後面的曝光圖,看到iPhone SE2搭載的是LCD螢幕,也就是以往蘋果口中的全貼合原彩屏,來實現自動控制螢幕顏色和亮度,保證螢幕色彩的準確性。 這款iPhone的定位就是填充iPhone市場的中低端機的空隙,也可以說是蘋果為了清倉配件而發布的一款機器,發布時間上是參照上一代iPhonese而選擇在春季發布的。 你們期待這部iPhone手機嗎?歡迎評論區一起探討!關注我,第一時間獲得最新數碼資訊。
內容簡介
Multiobjective Resource Management Problems (m-RMP) involves deciding how to divide a resource of limited availability among multiple demands in a way that optimizes current objectives. RMP is widely used to plan the optimal allocating or management resources process among various projects or business units for the maximum product and the minimum cost. “Resources” might be manpower, assets, raw materials, capital or anything else in limited supply. The solution method of RMP, however, has its own problems; this book identifies four of them along with the proposed methods to solve them. Mathematical models combined with effective multistage Genetic Algorithm (GA) approach help to develop a method for handling the m-RMP. The proposed approach not only can solve relatively large size problems but also has better performance than the conventional GA. And the proposed method provides more flexibility to m-RMP model which is the key to survive under severely competitive environment. We also believe that the proposed method can be adapted to other production-distribution planning and all m-RAP models.
In this book, four problems with m-RMP models will be clearly outlined and a multistage hybridized GA method for finding the best solution is then implemented. Comparison results with the conventional GA methods are also presented. This book also mentions several useful combinatorial optimization models in process system and proposed effective solution methods by using multistage GA.
Note:Part of this book, once published in international journals SCI (Science Direct) inside, be accepted have five articles.
作者簡介:
林吉銘 (Chi-Ming Lin)
電子信箱:chiminglin.tw@gmail.com
學歷
日本國立兵庫教育大學 教育學碩士
日本早稻田大學資訊生產系統研究所5年研究
日本公立前橋工科大學工學研究所 工學博士
經歷
教育部 專員
國立台北教育大學 兼任講師
台北市立教育大學 兼任講師
中央警察大學 兼任講師
國立台南師範大學 兼任講師
美和技術學院 專任講師
長庚技術學院 專任講師
桃園縣公、私立托兒所 評鑑委員
開南大學 專任講師(現職)
目錄
Acknowledgements3
Absract of Chinese 4
Abstract8
Chapter 1 Introduction2
1.1 Background of the Study2
1.2 Related Work7
1.2.1 Genetic Algorithm7
1.2.2 Multiobjective Genetic Algorithm36
1.3 Resource Management Problems54
1.4 Problems in this Dissertation58
1.4.1 A Solution Method for Human RMP Optimization58
1.4.2 A Solution Method for Asset RMP Optimization58
1.4.3 A Solution Method for Capital RMP Optimization58
1.4.4 A Solution Method for Staff Training RMP Optimization59
1.5 Organization of the Dissertation59
Chapter 2 Multistage Genetic Algorithm in Resource Management System65
2.1 Introduction65
2.2 Basic Idea67
2.2.1 Basic Idea Description67
2.2.2 Structure of Resource Management Solution System71
2.2.3 Multistage Network Framework74
2.2.4 Linearization76
2.2.5 Local Search78
2.3 Mathematical Formulations78
2.4 Constructing Multistage Network Structure81
2.4.1 Example One82
2.4.2 Example Two84
2.5 Solving Method by Multistage Genetic Algorithm90
2.5.1 Example Three93
2.5.2 Example Four99
2.6 Experimental Results102
2.6.1 Facility Allocation Problem102
2.6.2 Problem Description of Multiobjective Human RMP104
2.6.3 Experimental Results of Multiobjective Human RMP105
2.7 Summary110
Chapter 3 Optimization for Multiobjective Assets RMP by Multistage GA112
3.1 Introduction112
3.2 Problem Description113
3.2.1 There is Assets Resources Now113
3.2.2 The Data in the Past113
3.2.3 The Problem of Enterprise Boss Expects to be Solved114
3.3 Mathematical Model of Multiobjective Assets RMP115
3.4 Experimental Results and Discussion in First Part122
3.4.1 Experiments Results in the First Part122
3.4.2 Discussion in First Part125
3.5 Experimental Results and Discussion in Second Part134
3.5.1 Experimental Results in Second Part134
3.5.2 Discussion in Second Part139
3.6 Summary144
Chapter 4 Multistage GA for Optimization of Multiobjective Capital RMP149
4.1 Introduction149
4.2 Mathematical Model of Multiobjective Capital RMP153
4.3 Solution Approaches for Multiobjective Capital RMP155
4.3.1 Candidate Mutual Funds Selection155
4.3.2 Multistage Hybrid GA of Multiobjective Capital RMP156
4.3.3 Pareto Optimal Solution159
4.3.4 Adaptive Weight GA161
4.4 Numerical Example of Multiobjective Capital RMP164
4.4.1 Problem Description164
4.4.2 The Goal of the Problem Reached in Research166
4.4.3 Numerical Example of Multiobjective Capital RMP167
4.5 Discussion of Multiobjective Capital RMP175
4.6 Summary178
Chapter 5 Optimization of Staff Training RMP by Multistage GA182
5.1 Introduction182
5.2 Concepts of Competence Set183
5.3 Mathematical Model187
5.4 Solution Approaches by Multistage Hybrid GA191
5.4.1 Genetic Representation191
5.4.2 Evaluation193
5.4.3Selection193
5.5 Numerical Examples195
5.5.1 Problem Description195
5.5.2 The Goal of the Problem Reached in Research196
5.6 Summary209
Chapter 6 Conclusions and Future Research 213
6.1 Conclusions213
6.2 Future Research219
Glossary220
Notations220
Abbreviations222
Bibliography223
List of Publications231
International Journal Papers231
International Conference Papers with Review232
Index235
List of Figure
Figure 1.1: The Flow Chart of Genetic Algorithm11
Figure 1.2: Procedure-code of Basic GA12
Figure 1.3: Coding Space and Solution Space17
Figure 1.4: Feasibility and Legality18
Figure 1.5: The Mapping from Chromosomes to Solutions21
Figure 1.6: An Example of One-cut Point Crossover Operation24
Figure 1.7: Procedure-code of One-cut Point Crossover Operation25
Figure 1.8: An Example of Mutation Operation by Random27
Figure 1.9: An Example of Mutation Operation by Random27
Figure 1.10: Procedure-code of Multiobjective GA54
Figure 2.1: Proposed Structure of Resource Management Solution System72
Figure 2.2: Proposed a Flowchart of Resource Management Solution System73
Figure 2.3: An Example of Complex Multistage Network Framework74
Figure 2.4: Representation of Multistage Network Approach for RMP75
Figure 2.5: Representation Process for RMP83
Figure 2.6: Representation Process for RMP84
Figure 2.7: A Multistage Network of Human RMP90
Figure 2.8: The Code of Random Key-based Encoding in Procedure 194
Figure 2.9: The Code of Weight Generating in Procedure 295
Figure 2.10: An Example of Weight Generating96
Figure 2.11: An Example of One-cut Point Crossover Operator96
Figure 2.12: The Example of Insertion Mutation98
Figure 2.13: Proposed Structure of a Chromosome100
Figure 2.14: An Example of Optimal Allocation Path101
Figure 2.15: Proposed Chromosome Structure for Four Stages Allocation Path101
Figure 2.16: The Pareto Optimal Solutions of Weighted-sum Method107
Figure 2.17: The Pareto Optimal Solutions of Proposed Method108
Figure 3.1: An Example of Complex Multistage Network Framework114
Figure 3.2: The Path Process of Two Objectives in Each Node119
Figure 3.3: Simulation Results for Multiobjective Assets RMP121
Figure 3.4: The Simulation Results of pri-GA124
Figure 3.5: The Simulation Results of msh-GA124
Figure 3.6: Preference Solutions with Pareto Optimal Solutions by pri-GA137
Figure 3.7: Preference Solutions with Pareto Optimal Solutions by msh-GA137
Figure 4.1: Simple Case with Two Objectives160
Figure 4.2: The Procedure of Pareto GA161
Figure 4.3: Adaptive Weights and Adaptive Hyperplane163
Figure 4.4: The Process Path of Two Objectives in Each Node168
Figure 4.5: An Example for Multiobjective Capital RMP169
Figure 4.6: Experiment Results by Two Methods172
Figure 5.1: The Cost Function of CSE184
Figure 5.2: CSE in Multistage Network Model186
Figure 5.3: An Example of State Permutation Encoding for CSE Operation.192
Figure 5.4: An Example of State Permutation Decoding for CSE Operation.192
Figure 5.5: An Example of Evaluation for CSE193
Figure 5.6: An Example of Selection for CSE193
Figure 5.7: The Procedure of msh-GA for Multistage CSE194
Figure 5.8: An Example of CSE for Staff Training RMP198
Figure 5.9: The Process Path of Two Objectives in Each Arc199
Figure 5.10: A Solution Example of Pareto Optimal Solutions for CSE200
Figure 5.11: Simulation Results of CSE for Staff Training RMP205
List of Table
Table 2.1: Transportation Costs102
Table 2.2: Maintenance Costs of Each Facility102
Table 2.3: The Parameters Setting of Experiment102
Table 2.4: Transportation Amounts from Each Facility to Each Consumer103
Table 2.5: Total Cost of Facility Allocate Transportation by Two Methods103
Table 2.6: An Example of Expected Wage of Programmer (Workers)106
Table 2.7: An Example of Expected Product Number of Task (Job)106
Table 2.8: The Parameter Settings of Experiment106
Table 2.9: Experiment Results of Two Methods108
Table 2.10: Experiment Results of Overall Average by Two Methods109
Table 3.1: The Data of the Company in the Past 4 Years117
Table 3.2: An Example of Expected Cost in 4 Districts 118
Table 3.3: An Example of Expected Selling Goods in 4 Districts118
Table 3.4: The Total Number of Feasible Solutions for Process Planning120
Table 3.5: The Parameter Settings of Experiment122
Table 3.6: Experiment Rs of the Pareto Optimal Solutions123
Table 3.7: Experiment Result of Two Methods125
Table 3.8: Same Preference Solution for Minimum Cost127
Table 3.9: Same Preference Solution for Maximum Selling Goods Number129
Table 3.10: Preference for Golden Mean within Pareto Optimal Solutions131
Table 3.11: The Parameter Settings of msh-GA136
Table 3.12: Experiment Results for Pareto Optimal Solutions138
Table 3.13: Preference for Golden Mean within Pareto Optimal Solutions141
Table 4.1: 3-months and 12-months Return Rates for 60 Sample Companies165
Table 4.2: Reordering Data Sets of Mutual Funds165
Table 4.3: The Total Number of Feasible Solutions for Process Planning169
Table 4.4: The Covariance Matrix170
Table 4.5: The Parameters Setting of Experiment170
Table 4.6: Experiment Results of Pareto Optimal Solutions by Two Methods171
Table 4.7: Experiment Results for the Optimal Portfolio174
Table 4.8: The Optimal Portfolio Solution of Sharpe Ratio174
Table 5.1: Total Numbers of Feasible Solutions for CSE200
Table 5.2: An Example of Data for CSE203
Table 5.3: Parameters Settings204
Table 5.4: Pareto Optimal Solutions for Multiobjective CSE204
Table 5.5: Experiment Results of the Pareto Optimal Solutions207
Table 5.6: Experiment Results of Pareto Optimal Solutions208
序
Abstract
Multiobjective Resource Management Problems (m-RMP) involves deciding how to divide a resource of limited availability among multiple demands in a way that optimizes current objectives. RMP is widely used to plan the optimal allocating or management resources process among various projects or business units for the maximum product and the minimum cost. “Resources” might be manpower, assets, raw materials, capital or anything else in limited supply.
The solution method of RMP, however, has its own problems; this thesis identifies four of them along with the proposed methods to solve them. Mathematical models combined with effective multistage Genetic Algorithm (GA) approach help to develop a method for handling the m-RMP. The proposed approach not only can solve relatively large size problems but also has better performance than the conventional GA. And the proposed method provides more flexibility to m-RMP model which is the key to survive under severely competitive environment. We also believe that the proposed method can be adapted to other production-distribution planning and all m-RAP models.
In this thesis, four problems with m-RMP models will be clearly outlined and a multistage hybridized GA method for finding the best solution is then implemented. Comparison results with the conventional GA methods are also presented. This study also mentions several useful combinatorial optimization models in process system and proposed effective solution methods by using multistage GA. In the areas of future research, the methods outlined in this study might be applied to combinatorial optimization of m-RMP involving areas of education, portfolio selection or areas of industrial engineering design, product process planning system amongst many others.
詳細資料
- ISBN:9789866231483
- 規格:平裝 / 258頁 / 16k菊 / 14.8 x 21 cm / 普通級 / 單色印刷 / 初版
- 出版地:台灣
- 本書分類:> >
文章來源取自於:
壹讀 https://read01.com/L2n8e75.html
博客來 https://www.books.com.tw/exep/assp.php/888words/products/0010562465
如有侵權,請來信告知,我們會立刻下架。
DMCA:dmca(at)kubonews.com
聯絡我們:contact(at)kubonews.com
新竹首次購屋貸款成數申請信貸公司會知道嗎台南信貸銀行推薦彰化汽車抵押貸款銀行
信貸銀行 雲林快速撥款 負債百萬怎麼辦...我該如何解決負債?輕鬆還房貸 台北房屋貸款利率 台中代書貸款、房屋貸款、個人信貸哪邊找呢?買車貸款利率計算 申請個人信貸條件 代書貸款、房屋貸款、個人信貸審核條件通常需要什麼呢?屏東銀行信貸比較好貸 信用貸款率利 房屋貸款、個人信貸增貸常見問題,5大重點通通幫你分析好!



